%I #16 Aug 24 2024 18:37:06
%S 5,7,43,73,463,859,883,3559,3823,4273,77269
%N Primes p such that subtracting two from any single decimal digit of p produces another prime with restriction that first digit may not be changed to a 0 (obviously p cannot contain digits less than 2).
%C Starting from composites instead of primes we obtain much larger terms, like 92997492273. - _Giovanni Resta_, Feb 27 2013
%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/2561.html">Prime Curios! 77269</a>
%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_377.htm">Puzzle 377</a>
%e 463 belongs to this sequence because 463, 461, 443 and 263 are all prime.
%t apQ[p_]:=Module[{id=IntegerDigits[p]},id[[1]]>2&&Min[id]>1&&AllTrue[Table[p-(2*10^d),{d,0,IntegerLength[p]-1}],PrimeQ]]; Select[Prime[Range[80000]],apQ] (* _Harvey P. Dale_, Aug 24 2024 *)
%K nonn,base,fini,full
%O 1,1
%A _Arkadiusz Wesolowski_, Feb 27 2013