login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213163
Sequence of coefficients of x in marked mesh pattern generating function Q_{n,132}^(3,0,-,0)(x).
1
1, 7, 32, 122, 422, 1376, 4315, 13165, 39360, 115860, 336876, 969792, 2768917, 7851187, 22130912, 62066126, 173294930, 481976480, 1335880495, 3691245145, 10171349376, 27957706152, 76672984152, 209839988352, 573211991977, 1563112278751, 4255708706720
OFFSET
4,2
LINKS
S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012-2014.
FORMULA
From Vaclav Kotesovec, Nov 25 2012: (Start)
a(n) = (7*n+6)*F(2*n)/5 - (4*n+5)*F(2*n+1)/5 + 1, where F is Fibonacci number (A000045).
Recurrence: a(n) = 7*a(n-1) - 17*a(n-2) + 17*a(n-3) - 7*a(n-4) + a(n-5).
G.f.: x^4/(1-7*x+17*x^2-17*x^3+7*x^4-x^5). (End)
MATHEMATICA
CCC[t] = (1 - (1 - 4*t)^(1/2))/(2*t); NQ0[t, x] = ((1 + t - t*x) - ((1 + t - t*x)^2 - 4*t)^(1/2))/(2*t); NQ1[t, x] = 1/(1 - t*NQ0[t, x]); NQ2[t, x] = 1/(1 - t*NQ1[t, x]); NQ3[t, x] = 1/(1 - t*NQ2[t, x]); CoefficientList[Coefficient[Simplify[Series[NQ3[t, x], {t, 0, 20}]], x], t] (* Robert Price, Jun 06 2012 *)
CoefficientList[Series[1/(1 - 7*x + 17*x^2 - 17*x^3 + 7*x^4 - x^5), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 25 2012 *)
PROG
(Magma) I:=[1, 7, 32, 122, 422]; [n le 5 select I[n] else 7*Self(n-1)-17*Self(n-2)+17*Self(n-3)-7*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 25 2012
CROSSREFS
Sequence in context: A140289 A133107 A178851 * A249999 A034360 A268745
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jun 06 2012
STATUS
approved