Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 13 2022 11:14:59
%S 1,-1,-4,-6,96,1104,2016,-112176,-1718784,-642816,437031936,
%T 7656021504,-24274059264,-3939918299136,-72733516959744,
%U 699443277686784,67781787782086656,1236409075147014144,-25430445045847425024
%N Polylogarithm li(-n,-1/5) multiplied by (6^(n+1))/5.
%C See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=1,q=5.
%H Stanislav Sykora, <a href="/A213128/b213128.txt">Table of n, a(n) for n = 0..100</a>
%H OEIS-Wiki, <a href="http://oeis.org/wiki/Eulerian_polynomials">Eulerian polynomials</a>
%F See formula in A212846, setting p=1,q=5
%F From _Peter Bala_, Jun 24 2012: (Start)
%F E.g.f.: A(x) = 6/(5 + exp(6*x)) = 1 - x - 4*x^2/2! - 6 x^3/3! + 96*x^4/4! + ....
%F The compositional inverse (A(-x) - 1)^(-1) = x + 4*x^2/2 + 21*x^3/3 + 104*x^4/4 + 521*x^5/5 + ... is the logarithmic generating function for A015531.
%F (End)
%F G.f.: 1/Q(0), where Q(k) = 1 + x*(k+1)/( 1 - 5*x*(k+1)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 17 2013
%F a(n) = Sum_{k=0..n} k! * (-1)^k * 6^(n-k) * Stirling2(n,k). - _Seiichi Manyama_, Mar 13 2022
%e polylog(-5,-1/5)*6^6/5 = 1104.
%p seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*5^k, k=0..n),n=0..18); # _Peter Luschny_, Apr 21 2013
%t Table[If[n == 0, 1, PolyLog[-n, -1/5] 6^(n+1)/5], {n, 0, 18}] (* _Jean-François Alcover_, Jun 29 2019 *)
%o (PARI) /*See A212846; run limnpq(nmax,1,5) */
%o (PARI) x='x+O('x^66); Vec(serlaplace( 6/(5+exp(6*x)) )) \\ _Joerg Arndt_, Apr 21 2013
%o (PARI) a(n) = sum(k=0, n, k!*(-1)^k*6^(n-k)*stirling(n, k, 2)); \\ _Seiichi Manyama_, Mar 13 2022
%Y Cf. A212846, A210246, A212847, A213127
%Y Cf. A213129 through A213157.
%Y Cf. A015531.
%K sign
%O 0,3
%A _Stanislav Sykora_, Jun 06 2012