login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^2.
17

%I #14 Nov 06 2019 04:21:55

%S 1,1,2,11,56,401,2960,23909,199324,1704937,14871560,131002444,

%T 1162055526,10330588405,91813523884,814261196562,7195489202430,

%U 63317110066321,554812081610114,4845145547265182,42242647963009666,368598374017590156,3228911122031762918

%N G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^2.

%C Compare definition of g.f. to:

%C (1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).

%C (2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).

%C (3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).

%C (4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).

%C The first negative term is a(67). - _Georg Fischer_, Feb 16 2019

%H Paul D. Hanna, <a href="/A213098/b213098.txt">Table of n, a(n) for n = 0..300</a>

%e G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 56*x^4 + 401*x^5 + 2960*x^6 +...

%e Related expansions:

%e A(x)^6 = 1 + 6*x + 27*x^2 + 146*x^3 + 861*x^4 + 5772*x^5 + 42206*x^6 +...

%e A(-x*A(x)^6)^2 = 1 - 2*x - 7*x^2 - 20*x^3 - 172*x^4 - 1202*x^5 - 9766*x^6 -...

%t m = 23; A[_] = 1; Do[A[x_] = 1 + x/A[-x A[x]^6]^2 + O[x]^m, {m}];

%t CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 06 2019 *)

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^6,x,x+x*O(x^n))) );polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A000108, A001764, A002293, A213091, A213092, A213093, A213094, A213095, A213096, A213099, A213100, A213101, A213102, A213103, A213104, A213105.

%K sign

%O 0,3

%A _Paul D. Hanna_, Jun 05 2012