login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213079
Primes p such that 2p^2-1, 3p^2-2 and 4p^2-3 are also prime.
7
409, 941, 6299, 10459, 11131, 11551, 15581, 16831, 17321, 17569, 25771, 25969, 26701, 31511, 36131, 40529, 43781, 50231, 52879, 54631, 54779, 56711, 60271, 61331, 70321, 71081, 83101, 83299, 85931, 100649, 110681, 116381, 118409, 118751, 120641, 130469
OFFSET
1,1
COMMENTS
Subsequence of A213078:
a(1) = 409 = A213078(4) = A106483(29) = A000040(80),
a(2) = 941 = A213078(7) = A106483(50) = A000040(160).
LINKS
MATHEMATICA
Select[Prime[Range[20000]], PrimeQ[2 #^2 - 1] && PrimeQ[3 #^2 - 2] && PrimeQ[4 #^2 - 3] &] (* T. D. Noe, Jun 06 2012 *)
Select[Prime[Range[12500]], AllTrue[{2#^2-1, 3#^2-2, 4#^2-3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 11 2015 *)
PROG
(Magma) [p: p in PrimesUpTo(140000) | IsPrime(2*p^2-1) and IsPrime(3*p^2-2) and IsPrime(4*p^2-3)]; // Vincenzo Librandi, Apr 08 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Jun 04 2012
STATUS
approved