%I #45 May 26 2016 02:14:08
%S 1,1,1,2,1,3,1,7,8,1,10,14,1,17,50,36,1,24,89,78,1,36,207,368,200,1,
%T 49,340,701,431,1,70,685,2190,2756,1188,1,93,1075,3935,5564,2658
%N Irregular triangle read by rows: coefficients c(n,k) (n>=2, 0<=k<= floor((n-2)/2)) in formula for number of restricted partitions.
%C Let T^(n)_m denote the number of partitions of mn that can be obtained by adding together m (not necessarily distinct) partitions of n (see A213086). For T^(n)_2, T^(n)_3, T^(n)_4, T^(n)_5 see A002219 through A002222.
%C Metropolis and Stein show that T^(n)_m is given by the formula
%C T^(n)_m = Sum_{k=0..n-g-1} binomial(m+g,g+k) c(n,k), where g = floor((n+1)/2).
%H N. Metropolis and P. R. Stein, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80091-6">An elementary solution to a problem in restricted partitions</a>, J. Combin. Theory, 9 (1970), 365-376.
%e Triangle c(n,k) begins:
%e n\k
%e - 0 1 2 3 4 5 ...
%e ---------------------------------
%e 2 1
%e 3 1
%e 4 1 2
%e 5 1 3
%e 6 1 7 8
%e 7 1 10 14
%e 8 1 17 50 36
%e 9 1 24 89 78
%e 10 1 36 207 368 200
%e 11 1 49 340 701 431
%e 12 1 70 685 2190 2756 1188
%e 13 1 93 1075 3935 5564 2658
%e ...
%p with(combinat):
%p h:= proc(n, m) option remember;
%p `if`(m>1, map(x-> map(y-> sort([x[], y[]]), h(n, 1))[],
%p h(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x),
%p {partition(n)[]}), {[]}))
%p end:
%p T:= proc(n) local i, g, t;
%p g:= floor((n+1)/2);
%p subs(solve({seq(nops(h(n, t))=add(c||i *binomial(t+g, g+i),
%p i=0..n-g-1), t=1..n-g)}, {seq(c||i, i=0..n-g-1)}),
%p [seq(c||i, i=0..n-g-1)])[]
%p end:
%p seq(T(n), n=2..10); # _Alois P. Heinz_, Jul 11 2012
%t nmax = 13; mmax = 5;
%t T[n_, m_] := T[n, m] = Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ip]; i[0] = 1; Table[ Join[ Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k - 1], lg}, {k, 1, m}]]] // Flatten[#, m - 1] & // Union // Length]; T[_, 0] = 1;
%t U[n_, m_] := With[{g = Floor[(n + 1)/2]}, If[n == 1, 1, Sum[Binomial[m + g, g + k] c[n, k], {k, 0, n - g - 1}]]];
%t Do[TT = Table[T[n , m] - U[n , m], {n, 1, nmax}, {m, 0, mm}] // Flatten; c[_, 0] = 1; sol = Solve[Thread[TT == 0]][[1]]; cc = Table[c[n, k], {n, 2, nmax}, {k, 0, Floor[(n - 2)/2]}] /. sol // Flatten; Print[cc], {mm, 2, mmax}];
%t cc (* _Jean-François Alcover_, May 25 2016 *)
%Y Cf. A000041, A002219, A002220, A002221, A002222, A213075, A213076, A213086.
%K nonn,tabf,more
%O 2,4
%A _N. J. A. Sloane_, Jun 04 2012
%E 12 more terms (rows 12-13) from _Alois P. Heinz_, Jul 11 2012