login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lucas(n) mod n, Lucas(n)= A000032(n).
3

%I #18 Sep 08 2022 08:46:02

%S 0,1,1,3,1,0,1,7,4,3,1,10,1,3,14,15,1,0,1,7,11,3,1,2,11,3,22,7,1,18,1,

%T 31,4,3,4,34,1,3,17,7,1,18,1,7,41,3,1,2,29,23,4,7,1,0,44,47,4,3,1,22,

%U 1,3,41,63,11,18,1,7,50,53,1,2,1,3,64,7,73,18

%N Lucas(n) mod n, Lucas(n)= A000032(n).

%C a(n) = 1 for all prime values of n. Composite values for which a(n) = 1 are listed in A005845.

%H T. D. Noe, <a href="/A213060/b213060.txt">Table of n, a(n) for n = 1..10000</a>

%p with(combinat):f:=n-> fibonacci(n):L:=n->f(2*n)/f(n): seq(L(n) mod n, n= 1..75)

%p # alternative

%p A213060 := proc(n::integer)

%p modp(A000032(n),n) ;

%p end proc:

%p seq(A213060(n),n=1..100) ; # _R. J. Mathar_, Oct 02 2019

%t Table[Mod[LucasL[n], n], {n, 100}] (* _T. D. Noe_, Jun 06 2012 *)

%o (Magma) [Lucas(n) mod (n) : n in [1..120]]; // _Vincenzo Librandi_, Nov 19 2015

%Y Cf. A000032, A005845.

%Y Cf. A002708 (Fibonacci(n) mod n).

%K nonn,easy

%O 1,4

%A _Gary Detlefs_, Jun 03 2012