Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 14 2020 01:28:15
%S 2,4,8,15,21,35,33,39,65,51,57,95,69,115,86,87,93,155,212,111,122,123,
%T 129,215,141,235,158,159,265,371,177,183,194,427,201,335,213,219,365,
%U 511,237,395,249,415,446,267,278,623,964,291,302,303,309,515,321,327
%N Smallest number k such that the sum of prime factors of k (counted with multiplicity) is n times a prime.
%C Smallest k such that sopfr(k) = n*p, p prime.
%H Alois P. Heinz, <a href="/A213020/b213020.txt">Table of n, a(n) for n = 1..5000</a>
%e a(19) = 212 because 212 = 2^2 * 53 => sum of prime factors = 2*2+53 = 57 = 19*3 where 3 is prime.
%p sopfr:= proc(n) option remember;
%p add(i[1]*i[2], i=ifactors(n)[2])
%p end:
%p a:= proc(n) local k, p;
%p for k from 2 while irem (sopfr(k), n, 'p')>0 or
%p not isprime(p) do od; k
%p end:
%p seq (a(n), n=1..100); # _Alois P. Heinz_, Jun 03 2012
%t sopfr[n_] := Sum[Times @@ f, {f, FactorInteger[n]}];
%t a[n_] := For[k = 2, True, k++, If[PrimeQ[sopfr[k]/n], Return[k]]];
%t Array[a, 100] (* _Jean-François Alcover_, Nov 13 2020 *)
%o (PARI) sopfr(n) = my(f=factor(n)); sum(k=1,#f~,f[k,1]*f[k,2]); \\ A001414
%o isok(k, n) = my(dr = divrem(sopfr(k), n)); (dr[2]==0) && isprime(dr[1]);
%o a(n) = {my(k=2); while (!isok(k, n), k++); k;} \\ _Michel Marcus_, Nov 13 2020
%Y Cf. A001414, A100118, A213015, A213016.
%K nonn
%O 1,1
%A _Michel Lagneau_, Jun 02 2012