login
Number of standard Young tableaux of n cells and height <= 10.
7

%I #30 Mar 24 2017 00:44:22

%S 1,1,2,4,10,26,76,232,764,2620,9496,35695,140140,568360,2389192,

%T 10338315,46118592,211120144,992316928,4773362476,23500234512,

%U 118125854560,606106812640,3168660576795,16872323635132,91369920670420,503022250919640,2811920834508705

%N Number of standard Young tableaux of n cells and height <= 10.

%C Number of standard Young tableaux of n cells and <= 10 columns.

%C Also the number of n-length words w over 10-ary alphabet {a1,a2,...,a10} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a10), where #(z,x) counts the letters x in word z.

%C Conjecture: generally (for tableaux with height <= k), a(n) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * prod(j=1..k,Gamma(j/2)); set k=10 for this sequence. - _Vaclav Kotesovec_, Sep 12 2013

%H Alois P. Heinz, <a href="/A212916/b212916.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ 42525/32 * 10^(n+45/2)/(Pi^(5/2)*n^(45/2)). - _Vaclav Kotesovec_, Sep 11 2013

%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+

%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

%p end:

%p g:= proc(n, i, l) option remember;

%p `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,

%p g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))

%p end:

%p a:= n-> g(n, 10, []):

%p seq(a(n), n=0..30);

%p # second Maple program:

%p a:= proc(n) option remember;

%p `if`(n<6, [1, 1, 2, 4, 10, 26][n+1],

%p ((70*n^4+4144*n^3+84986*n^2+685800*n+1656000)*a(n-1)

%p +4*(n-1)*(35*n^4+1778*n^3+30106*n^2+184221*n+244350)*a(n-2)

%p -8*(n-1)*(n-2)*(518*n^2+11916*n+59265)*a(n-3)

%p -16*(n-1)*(n-2)*(n-3)*(259*n^2+4819*n+17355)*a(n-4)

%p +21600*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)

%p +14400*(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)) /

%p ((n+21)*(n+9)*(n+16)*(n+25)*(n+24)))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 12 2012

%t Flatten[{1,RecurrenceTable[{-14400 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-6+n]-21600 (-4+n) (-3+n) (-2+n) (-1+n) a[-5+n]+16 (-3+n) (-2+n) (-1+n) (17355+4819 n+259 n^2) a[-4+n]+8 (-2+n) (-1+n) (59265+11916 n+518 n^2) a[-3+n]-4 (-1+n) (244350+184221 n+30106 n^2+1778 n^3+35 n^4) a[-2+n]-2 (828000+342900 n+42493 n^2+2072 n^3+35 n^4) a[-1+n]+(9+n) (16+n) (21+n) (24+n) (25+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]}] (* _Vaclav Kotesovec_, Sep 11 2013 *)

%Y Column k=10 of A182172.

%K nonn

%O 0,3

%A _Alois P. Heinz_, May 30 2012