Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 21 2019 03:53:40
%S 1,4,25,64,169,324,625,1024,1681,2500,3721,5184,7225,9604,12769,16384,
%T 21025,26244,32761,40000,48841,58564,70225,82944,97969,114244,133225,
%U 153664,177241,202500,231361,262144,297025,334084,375769
%N Number of quadruples (w,x,y,z) with all terms in {0,...,n} such that w-x, x-y, and y-z all have the same parity.
%C For a guide to related sequences, see A211795.
%C Sum of odd integers between 1 and (n+1)^2. - _Réjean Labrie_, Jan 14 2014
%H Muniru A Asiru, <a href="/A212893/b212893.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1).
%F a(n) = (A000982(n+1))^2.
%F a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
%F G.f.: f(x)/g(x), where f(x) = -1 - 2*x - 15*x^2 - 12*x^3 - 15*x^4 - 2*x^5 - x^6 and g(x) = ((-1+x)^5)*(1+x)^3.
%p A212893 := n->ceil((n+1)^2/2)^2; seq(A212893(k), k=1..100); # _Wesley Ivan Hurt_, Jun 14 2013
%t t = Compile[{{n, _Integer}}, Module[{s = 0},
%t (Do[If[Mod[w - x, 2] == Mod[x - y, 2] == Mod[y - z, 2], s = s + 1],
%t {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
%t m = Map[t[#] &, Range[0, 40]] (* this sequence *)
%t Sqrt[m] (* A000982 except for offset *)
%Y Cf. A000982, A211795.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, May 30 2012