The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212882 Carmichael numbers of the form n*(2*n - 1)*(p*n - p + 1)*(2*p*n - 2*p + 1), where p is odd, p from 3 to 23. 1

%I

%S 63973,172081,31146661,167979421,277241401,703995733,1504651681,

%T 1949646601,2414829781,21595159873,117765525241,192739365541,

%U 461574735553,881936608681,2732745608209,3145699746793,3307287048121,3976486324993,7066238244481,7932245192461,8916642713161,9924090391909

%N Carmichael numbers of the form n*(2*n - 1)*(p*n - p + 1)*(2*p*n - 2*p + 1), where p is odd, p from 3 to 23.

%C The following Carmichael numbers are of the form n*(2n-1)*(3n-2)*(6n-5): 63973, 31146661, 703995733, 2414829781, 192739365541, 461574735553, 3976486324993.

%C The following Carmichael numbers are of the form n*(2n-1)*(5n-4)*(10n-9): 172081, 881936608681, 3307287048121, 8916642713161.

%C The following Carmichael number is of the form n*(2n-1)*(7n-6)*(14n-13): 167979421.

%C The following Carmichael number is of the form n*(2n-1)*(9n-8)*(18n-17): 277241401.

%C The following Carmichael number is of the form n*(2n-1)*(11n-10)*(22n-21): 9924090391909.

%C The following Carmichael number is of the form n*(2n-1)*(15n-14)*(30n-29): 7932245192461.

%C The following Carmichael number is of the form n*(2n-1)*(17n-16)*(34n-33): 3145699746793.

%C The following Carmichael numbers are of the form n*(2n-1)*(21n-20)*(42n-41): 1504651681, 117765525241, 2732745608209.

%C The following Carmichael number is of the form n*(2n-1)*(23n-22)*(46n-45): 7066238244481.

%C For p=13 and p=19, there is no Carmichael number up to 10^13.

%C There is not any other Carmichael number of this form, for p from 3 to 23, up to 10^13.

%C Conjecture: for any odd number p we have an infinite number of Carmichael numbers of the form n*(2*n - 1)*(p*n - p + 1)*(2*p*n - 2*p + 1).

%C Note: many numbers of the form n*(2*n - 1)*(p*n - p + 1)*(2*p*n - 2*p + 1), not divisible by 2, 3 or 5, where p is odd or even, are squarefree and respects the Korselt's criterion for many of their prime divisors or are not squarefree but respects the Korselt's criterion sometimes even for all their divisors (but we didn’t find Carmichael numbers when p is even).

%H Charles R Greathouse IV, <a href="/A212882/b212882.txt">Table of n, a(n) for n = 1..10000</a>

%H E. W. Weisstein, <a href="http://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>

%H E. W. Weisstein, <a href="http://mathworld.wolfram.com/KorseltsCriterion.html">Korselt’s Criterion</a>

%o (PARI) Kv(n, v)=for(i=2,#v, for(j=1,i-1, if(gcd(v[i],v[j])>1, return(0)))); for(i=1,#v, my(f=factor(v[i])); for(j=1, #f~, if(f[j, 2]>1 || (n-1)%(f[j, 1]-1), return(0)))); 1

%o list(lim)=my(v=List(),n,C); forstep(p=3,23,2, n=3; while((C=n*(2*n - 1)*(p*n - p + 1)*(2*p*n - 2*p + 1))<=lim, if(Kv(C,[n, 2*n-1, p*n-p+1, 2*p*n-2*p+1]), listput(v,C)); n+=2)); Set(v) \\ _Charles R Greathouse IV_, Jul 07 2017

%K nonn

%O 1,1

%A _Marius Coman_, May 29 2012

%E a(8) and a(10) inserted by _Charles R Greathouse IV_, Jul 07 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 03:56 EST 2021. Contains 349345 sequences. (Running on oeis4.)