login
Decimal expansion of 5/24.
0

%I #38 Aug 09 2024 10:08:01

%S 2,0,8,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3

%N Decimal expansion of 5/24.

%C Essentially the same as A021052 and A021016.

%C The greedy Egyptian fraction representation of 5/24 is 1/5 + 1/120. - _Elmo R. Oliveira_, Aug 03 2024

%H Igor E. Shparlinski and Wolfgang Steiner, <a href="http://arxiv.org/abs/1205.5673">On digit patterns in expansions of rational numbers with prime denominator</a>, arXiv:1205.5673 [math.NT], 2012.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F From _Elmo R. Oliveira_, Aug 03 2024: (Start)

%F G.f.: (2 - 2*x + 8*x^2 - 5*x^3)/(1 - x).

%F a(n) = 3 for n >= 3. (End)

%F E.g.f.: 3*exp(x) - 1 - 3*x + 5*x^2/2. - _Stefano Spezia_, Aug 09 2024

%e 5/24 = 0.208333333...

%t RealDigits[5/24, 10, 100][[1]] (* _Alonso del Arte_, May 28 2012 *)

%Y Cf. A021016 (1/12), A021028 (1/24), A021052 (1/48).

%K nonn,easy,cons

%O 0,1

%A _Jonathan Vos Post_, May 28 2012