login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers up to 10^n with an even number of not necessarily distinct prime factors, or positive Liouville function.
1

%I #17 May 30 2012 16:42:40

%S 1,5,49,493,4953,49856,499735,4999579,49998058,499987392,4999941987,

%T 49999828888,499999738687,4999999516711

%N Numbers up to 10^n with an even number of not necessarily distinct prime factors, or positive Liouville function.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LiouvilleFunction.html">Liouville Function</a>

%F a(n) = A011557(n) - A212819(n).

%F a(n) = (10^n)/2 + A090410(n)/2. - _Donovan Johnson_, May 30 2012

%F a(n) = A055037(10^n). - _Ray Chandler_, May 30 2012

%e a(1) = 5 since up to 10 there are the five numbers 1, 4, 6, 9, 10 with an even number of prime factors, or positive Liouville function.

%p zg:=0: zu:=0: G:=[]: U:=[]: k:=0:

%p for i from 1 to 10^8 do if numtheory[bigomega](i) mod 2 = 0 then zg:=zg+1: else zu:=zu+1: fi: if i=10^k then G:=[op(G),zg]: U:=[op(U),zu]: k:=k+1: fi: od:

%p print(G);

%t Table[Length[Select[Range[10^n], EvenQ[PrimeOmega[#]] &]], {n, 0, 5}] (* _Alonso del Arte_, May 28 2012 *)

%t Table[Count[LiouvilleLambda[Range[10^n]], 1], {n, 0, 5}] (* _Ray Chandler_, May 30 2012 *)

%Y Cf. A055037 (goes up to n rather than 10^n), A002819, A008836, A028260, A065043, A090410.

%K nonn

%O 0,2

%A _Martin Renner_, May 28 2012

%E a(9)-a(13) from _Donovan Johnson_, May 30 2012