Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 31 2013 09:23:51
%S 13,322,4057,43050,428617,4135249,39179582,366956550,3410099667,
%T 31512792243,290000751576,2660274782385,24342553658646,
%U 222296998969810,2026699958947573,18452534543569730,167814036979752705
%N Number of 0..2 arrays of length 2*n+3 with sum less than 2*n in any length 2n subsequence (=less than 50% duty cycle)
%C Row 4 of A212729
%H R. H. Hardin, <a href="/A212733/b212733.txt">Table of n, a(n) for n = 1..210</a>
%F From _Vaclav Kotesovec_, Jul 31 2013: (Start)
%F Empirical: n*(2*n-1)*(641952*n^5 - 9661256*n^4 + 56355290*n^3 - 158324563*n^2 + 212843323*n - 108787536)*a(n) = (24394176*n^7 - 397299472*n^6 + 2605594692*n^5 - 8806725568*n^4 + 16309249503*n^3 - 16218569485*n^2 + 7794486684*n - 1330045920)*a(n-1) - 9*(14122944*n^7 - 240151568*n^6 + 1667254836*n^5 - 6073887920*n^4 + 12400532871*n^3 - 13948629407*n^2 + 7754485194*n - 1524164040)*a(n-2) + 81*(n-4)*(2*n-7)*(641952*n^5 - 6451496*n^4 + 24129786*n^3 - 40806709*n^2 + 29824803*n - 6932790)*a(n-3)
%F Conjecture: a(n) ~ 27/2*9^n. (End)
%e Some solutions for n=3
%e ..0....0....2....0....2....0....1....1....0....0....0....1....0....1....2....1
%e ..0....0....0....1....1....1....1....2....2....1....1....0....0....1....0....0
%e ..2....1....0....0....0....1....0....1....0....1....0....2....0....2....1....1
%e ..1....2....0....0....0....2....1....1....0....1....1....0....0....0....0....0
%e ..1....1....0....0....1....0....2....0....0....1....0....2....2....0....0....1
%e ..0....0....0....0....0....1....0....0....0....1....1....0....2....0....0....0
%e ..0....0....0....0....2....0....0....0....1....0....0....1....0....1....1....2
%e ..0....0....2....1....0....0....0....2....1....0....2....0....0....2....0....0
%e ..0....1....2....0....0....2....2....1....0....0....0....2....0....1....1....2
%K nonn
%O 1,1
%A _R. H. Hardin_ May 25 2012