login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: n-th row gives distinct products of partitions of n (A000041).
6

%I #23 Jun 29 2019 03:59:09

%S 1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,6,1,2,3,4,5,6,8,9,1,2,3,4,5,6,7,8,9,

%T 10,12,1,2,3,4,5,6,7,8,9,10,12,15,16,18,1,2,3,4,5,6,7,8,9,10,12,14,15,

%U 16,18,20,24,27,1,2,3,4,5,6,7,8,9,10,12,14

%N Triangle read by rows: n-th row gives distinct products of partitions of n (A000041).

%C A034891(n) = length of n-th row;

%C A000792(n) = largest term of n-th row;

%C for n>5: A007918(n) = smallest number <= A000792(n) not occurring in n-th row.

%H Reinhard Zumkeller, <a href="/A212721/b212721.txt">Rows n = 0..36 of triangle, flattened</a>

%e A000041(6)=11, the 11 partitions and their products of 6:

%e 1: (1,1,1,1,1,1) -> 1 * 1 * 1 * 1 * 1 * 1 = 1

%e 2: (1,1,1,1,2) -> 1 * 1 * 1 * 1 * 2 = 2

%e 3: (1,1,1,3) -> 1 * 1 * 1 * 3 = 3

%e 4: (1,1,2,2) -> 1 * 1 * 2 * 2 = 4

%e 5: (1,1,4) -> 1 * 1 * 4 = 4

%e 6: (1,2,3) -> 1 * 2 * 3 = 6

%e 7: (1,5) -> 1 * 5 = 5

%e 8: (2,2,2) -> 2 * 2 * 2 = 8

%e 9: (2,4) -> 2 * 4 = 8

%e 10: (3,3) -> 3 * 3 = 9

%e 11: (6) -> 6,

%e sorted and duplicates removed: T(6,1..8)=[1,2,3,4,5,6,8,9], A034891(6)=8.

%e The triangle begins:

%e 0 | [1]

%e 1 | [1]

%e 2 | [1,2]

%e 3 | [1,2,3]

%e 4 | [1,2,3,4]

%e 5 | [1,2,3,4,5,6]

%e 6 | [1,2,3,4,5,6,8,9]

%e 7 | [1,2,3,4,5,6,7,8,9,10,12]

%e 8 | [1,2,3,4,5,6,7,8,9,10,12,15,16,18]

%e 9 | [1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,24,27]

%e 10 | [1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,30,32,36].

%t row[n_] := Union[Times @@@ IntegerPartitions[n]];

%t Table[row[n], {n, 0, 10}] (* _Jean-François Alcover_, Jun 29 2019 *)

%o (Haskell)

%o import Data.List (nub, sort)

%o a212721 n k = a212721_row n !! (k-1)

%o a212721_row = nub . sort . (map product) . ps 1 where

%o ps x 0 = [[]]

%o ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]

%o a212721_tabf = map a212721_row [0..]

%o (Sage)

%o [sorted(list(set([mul(p) for p in Partitions(n)]))) for n in range(11)] # _Peter Luschny_, Dec 13 2015

%Y Cf. A000041, A000792, A034891.

%K nonn,tabf,look

%O 0,4

%A _Reinhard Zumkeller_, Jun 14 2012