login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (w,x,y,z) with all terms in {1,...,n} and w > |x-y| + |y-z|.
2

%I #15 May 10 2019 18:33:54

%S 0,1,8,35,104,247,504,925,1568,2501,3800,5551,7848,10795,14504,19097,

%T 24704,31465,39528,49051,60200,73151,88088,105205,124704,146797,

%U 171704,199655,230888,265651,304200,346801,393728,445265,501704

%N Number of (w,x,y,z) with all terms in {1,...,n} and w > |x-y| + |y-z|.

%C a(n)+A212673(n) = n^4. For a guide to related sequences, see A211795.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4, -5, 0, 5, -4, 1).

%F a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).

%F G.f.: (x + 4*x^2 + 8*x^3 + 4*x^4 + x^5)/(1 - 4*x + 5*x^2 - 5*x^4 + 4*x^5 - x^6). [corrected by _Georg Fischer_, May 10 2019]

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[w > Abs[x - y] + Abs[y - z], s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

%t Map[t[#] &, Range[0, 40]] (* A212674 *)

%t LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 8, 35, 104, 247}, 40]

%Y Cf. A211795.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, May 23 2012