Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 01 2015 09:49:27
%S 18,340,2022,7400,20602,48060,99022,186064,325602,538404,850102,
%T 1291704,1900106,2718604,3797406,5194144,6974386,9212148,11990406,
%U 15401608,19548186,24543068,30510190,37585008,45915010,55660228,66993750,80102232,95186410,112461612
%N a(n) = 2/15 * (32*n^5 + 80*n^4 + 40*n^3 - 20*n^2 + 3*n).
%C a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 64*n^6).
%H Colin Barker, <a href="/A212669/b212669.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Shevelev, <a href="http://arxiv.org/abs/0710.3177">On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m</a>, arXiv:0710.3177 [math.NT], 2007.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = 2/(2*n+1)*Sum_{i=1..n} tan^6(Pi*i/(2*n+1)).
%F G.f.: 2*x*(9+116*x+126*x^2+4*x^3+x^4) / (1-x)^6. - _Colin Barker_, Dec 01 2015
%o (PARI) Vec(2*x*(9+116*x+126*x^2+4*x^3+x^4)/(1-x)^6 + O(x^50)) \\ _Colin Barker_, Dec 01 2015
%Y Cf. A038754, A084990, A091042, A212500, A212592, A212592, A212592, A212668.
%K nonn,base,easy
%O 1,1
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, May 23 2012