login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212631
Number of dominating subsets of the rooted tree with Matula-Goebel number n.
13
1, 3, 5, 5, 9, 9, 9, 9, 17, 17, 17, 15, 15, 15, 31, 17, 15, 27, 17, 29, 29, 31, 27, 27, 57, 27, 53, 25, 29, 51, 31, 33, 57, 29, 53, 45, 27, 27, 51, 53, 27, 45, 25, 53, 97, 53, 51, 51, 49, 97, 53, 45, 33, 81, 105, 45, 53, 51, 29, 87, 45, 57, 89, 65, 93, 93, 27
OFFSET
1,2
COMMENTS
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n) = Sum(A212630(n,k), k>=1).
a(n) is odd (see the Brouwer-Csorba-Schrijver reference).
REFERENCES
A. E. Brouwer, P. Csorba, and A. Schrijver, The number of dominating sets of a finite graph is odd. Preprint available on A. E. Brouwer's homepage.
LINKS
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
In A212630 one gives the domination polynomial P(n)=P(n,x) of the rooted tree with Matula-Goebel number n. We have a(n) = P(n,1).
EXAMPLE
a(3)=5 because the rooted tree with Matula-Goebel number 3 is the path tree R - A - B; its dominating subsets are {A}, {R,A}, {R,B}, {A,B}, and {R,A,B}.
MAPLE
with(numtheory): P := proc (n) local r, s, A, B, C: r := n-> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(A(pi(n))+B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: sort(expand(A(n)+B(n))) end proc: seq(subs(x = 1, P(n)), n = 1 .. 100);
MATHEMATICA
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(A[PrimePi[n]] + B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x];
B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, Expand[B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]];
c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True, Expand[c[r[n]]*c[s[n]]]];
a[n_] := A[n] + B[n] /. x -> 1;
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 19 2024, after Maple code *)
CROSSREFS
Sequence in context: A348374 A029639 A087349 * A090792 A076877 A332775
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 11 2012
STATUS
approved