login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212550
Number of partitions of n containing at least one part m-10 if m is the largest part.
2
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 112, 159, 211, 291, 381, 512, 663, 873, 1117, 1448, 1833, 2342, 2938, 3708, 4611, 5760, 7105, 8792, 10769, 13215, 16077, 19585, 23679, 28651, 34447, 41424, 49541, 59248, 70509, 83892, 99390, 117695, 138846, 163708
OFFSET
10,5
LINKS
FORMULA
G.f.: Sum_{i>0} x^(2*i+10) / Product_{j=1..10+i} (1-x^j).
EXAMPLE
a(12) = 1: [11,1].
a(13) = 1: [11,1,1].
a(14) = 3: [11,1,1,1], [11,2,1], [12,2].
a(15) = 4: [11,1,1,1,1], [11,2,1,1], [11,3,1], [12,2,1].
a(16) = 8: [11,1,1,1,1,1], [11,2,1,1,1], [11,2,2,1], [11,3,1,1], [11,4,1], [12,2,1,1], [12,2,2], [13,3].
MAPLE
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-10, min(n-2*m-10, m+10)), m=1..(n-10)/2):
seq(a(n), n=10..60);
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(MemberQ[#, #[[1]]-10]&)], {n, 10, 60}] (* Harvey P. Dale, Feb 10 2015 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2m - 10, Min[n - 2m - 10, m + 10]], {m, 1, (n - 10)/2}];
a /@ Range[10, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A212551.
Sequence in context: A212547 A212548 A212549 * A024786 A299069 A097497
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 20 2012
STATUS
approved