Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:02
%S 3,5,7,11,13,17,19,29,37,41,43,53,59,61,67,73,79,83,97,101,103,107,
%T 109,113,131,137,139,149,151,157,163,173,179,181,193,197,199,211,227,
%U 229,241,251,269,271,277,281,283,293,307,313,317,331,337,347,349,353,367
%N Primes p such that x^48 = 2 has no solution mod p.
%C Complement of A049580 relative to A000040.
%C This sequence is not the same as A059362. First disagreement at index 162: a(162)=1217, A059362(162)=1229.
%H Bruno Berselli, <a href="/A212376/b212376.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Prime[Range[PrimePi[400]]], ! MemberQ[PowerMod[Range[#], 48, #], Mod[2, #]] &]
%t ok[p_] := Reduce[Mod[x^48 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[75]], ok] (* _Vincenzo Librandi_, Sep 21 2012 *)
%o (Magma) [p: p in PrimesUpTo(400) | forall{x: x in ResidueClassRing(p) | x^48 ne 2}];
%o (PARI)
%o N=10^4; default(primelimit,N);
%o ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
%o forprime(p=2,N, if (! ok(p,2,48),print1(p,", ")));
%o /* _Joerg Arndt_, Sep 21 2012 */
%Y Cf. A000040, A049580.
%Y Cf. A059362.
%K nonn,easy
%O 1,1
%A _Bruno Berselli_, Sep 14 2012