login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of Dyck n-paths all of whose ascents and descents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.
8

%I #20 Jan 21 2019 17:07:20

%S 1,1,1,1,1,1,1,1,2,1,1,1,1,5,1,1,1,1,2,14,1,1,1,1,1,4,42,1,1,1,1,1,2,

%T 8,132,1,1,1,1,1,1,4,17,429,1,1,1,1,1,1,2,7,37,1430,1,1,1,1,1,1,1,4,

%U 12,82,4862,1,1,1,1,1,1,1,2,7,22,185,16796,1

%N Number A(n,k) of Dyck n-paths all of whose ascents and descents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A212363/b212363.txt">Antidiagonals n = 0..140, flattened</a>

%F G.f. of column k>0 satisfies: A_k(x) = 1+A_k(x)*(x-x^k*(1-A_k(x))), g.f. of column k=0: A_0(x) = 1/(1-x).

%F A(n,k) = A(n-1,k) + Sum_{j=1..n-k} A(j,k)*A(n-k-j,k) for n,k>0; A(n,0) = A(0,k) = 1.

%F G.f. of column k > 0: (1 - x + x^k - sqrt((1 - x + x^k)^2 - 4*x^k)) / (2*x^k). - _Vaclav Kotesovec_, Sep 02 2014

%e A(3,0) = 1: UDUDUD.

%e A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.

%e A(4,2) = 4: UDUDUDUD, UDUUUDDD, UUUDDDUD, UUUDUDDD.

%e A(5,2) = 8: UDUDUDUDUD, UDUDUUUDDD, UDUUUDDDUD, UDUUUDUDDD, UUUDDDUDUD, UUUDUDDDUD, UUUDUDUDDD, UUUUUDDDDD.

%e A(5,3) = 4: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDUDDDD.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 1, 1, 1, 1, 1, 1, ...

%e 1, 5, 2, 1, 1, 1, 1, 1, ...

%e 1, 14, 4, 2, 1, 1, 1, 1, ...

%e 1, 42, 8, 4, 2, 1, 1, 1, ...

%e 1, 132, 17, 7, 4, 2, 1, 1, ...

%e 1, 429, 37, 12, 7, 4, 2, 1, ...

%p A:= proc(n, k) option remember;

%p `if`(k=0, 1, `if`(n=0, 1, A(n-1, k)

%p +add(A(j, k)*A(n-k-j, k), j=1..n-k)))

%p end:

%p seq(seq(A(n, d-n), n=0..d), d=0..15);

%p # second Maple program:

%p A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(

%p A||k=1+A||k*(x-x^k*(1-A||k)), A||k), x, n+1), x, n)):

%p seq(seq(A(n, d-n), n=0..d), d=0..15);

%t A[n_, k_] := A[n, k] = If[k == 0, 1, If[n == 0, 1, A[n-1, k] + Sum[A[j, k]*A[n-k-j, k], {j, 1, n-k}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* _Jean-François Alcover_, Jan 15 2014, translated from first Maple program *)

%Y Columns k=0-10 give: A000012, A000108, A004148, A023432, A023427, A212364, A212365, A212366, A212367, A212368, A212369.

%K nonn,tabl

%O 0,9

%A _Alois P. Heinz_, May 10 2012