%I #25 Oct 20 2014 17:15:15
%S 14,56,188,603,1907,5615,15968,44464,121693,326937,866104,2268739,
%T 5884632,15127516,38589364,97776517,246248849,616795067,1537351460,
%U 3814809145,9427784176,23213028624,56960216422,139330244662,339825250768,826596931346
%N Sequence of coefficients of x in marked mesh pattern generating function Q_{n,132}^(0,0,4,0)(x).
%H S. Kitaev, J. Remmel and M. Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I</a>, arXiv preprint arXiv:1201.6243, 2012
%F Empirical g.f.: -x^5*(25*x^3+20*x^2+14*x+14) / (5*x^4+2*x^3+x^2+x-1)^3. - _Colin Barker_, Jul 22 2013
%t QQQ4[t, x] = 2/(1+(t*x-t)*(1+t+2*t^2+5*t^3)+((1+(t*x-t)*(1+t+2*t^2+5*t^3))^2-4*t*x)^(1/2)); CoefficientList[Coefficient[Series[QQQ4[t, x], {t, 0, 22}], x], t] (* Robert Price, Jun 05 2012 *)
%K nonn
%O 5,1
%A _N. J. A. Sloane_, May 09 2012
%E a(10)-a(22) from _Robert Price_, Jun 04 2012