

A212274


Minimal k >= 5n such that n^2 + 2nk + k is a perfect square.


0



5, 12, 16, 20, 64, 76, 49, 100, 112, 64, 136, 148, 160, 172, 184, 105, 120, 220, 120, 244, 256, 121, 280, 292, 161, 316, 144, 176, 352, 364, 221, 217, 400, 217, 424, 436, 232, 225, 472, 484, 496, 288, 273, 532, 225, 288, 253, 580, 352, 604, 616, 276, 640
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Without any restriction, trivially, a(n)=0 and, if to consider a(n) positive, then, again trivially, a(n)=1. Without the restriction k >= 5n, we have a(n)=4*n+1; on the other hand, if to require a(n)>=5*n and in addition a(n+1)>a(n), then we obtain sequence 5,12,16,20 and, beginning with n=5, we have progression 64+12*(n5).


LINKS

Table of n, a(n) for n=1..53.


MATHEMATICA

Table[k = 5*n; While[! IntegerQ[Sqrt[n^2 + 2*n*k + k]], k++]; k, {n, 100}] (* T. D. Noe, May 18 2012 *)


CROSSREFS

Sequence in context: A178469 A314277 A314278 * A301714 A314279 A314280
Adjacent sequences: A212271 A212272 A212273 * A212275 A212276 A212277


KEYWORD

nonn


AUTHOR

Vladimir Shevelev and Peter J. C. Moses, May 13 2012


STATUS

approved



