login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (w,x,y,z) with all terms in {1,...,n} and 3w<x+y+z+n.
3

%I #24 Jan 05 2025 12:31:22

%S 0,1,12,63,202,496,1034,1923,3289,5280,8062,11820,16761,23110,31111,

%T 41030,53151,67777,85233,105862,130026,158109,190513,227659,269990,

%U 317967,372070,432801,500680,576246,660060,752701,854767,966878

%N Number of (w,x,y,z) with all terms in {1,...,n} and 3w<x+y+z+n.

%C a(n)+A212250(n) = n^4.

%C For a guide to related sequences, see A211795.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,5,-5,6,-4,1).

%F a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-5*a(n-4)+6*a(n-5)-4*a(n-6)+a(n-7).

%F G.f.: x*(1+8*x+21*x^2+17*x^3+11*x^4+x^5)/((1+x+x^2)*(1-x)^5). - _Bruno Berselli_, Jun 05 2012

%F a(n) = (59*n^4 -10*n^3 +5*n^2 -6*n -8*((((n+1) mod 3) +(-1)^((n+1) mod 3))*(-1)^(n mod 3)))/72. - _Bruno Berselli_, Jun 05 2012

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[3 w < x + y + z + n, s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

%t Map[t[#] &, Range[0, 40]] (* A212249 *)

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%Y Cf. A211795, A212247.

%K nonn,easy,changed

%O 0,3

%A _Clark Kimberling_, May 09 2012