login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((prime(n) - 1)/2)!, n >= 2.
1

%I #13 Oct 27 2024 03:13:41

%S 1,2,6,120,720,40320,362880,39916800,87178291200,1307674368000,

%T 6402373705728000,2432902008176640000,51090942171709440000,

%U 25852016738884976640000,403291461126605635584000000,8841761993739701954543616000000

%N a(n) = ((prime(n) - 1)/2)!, n >= 2.

%C a(n)^2 == (-1)^((prime(n) + 1)/2) (mod prime(n)).

%C Use product(p-j,j=1..(p-1)/2) == (-1)^((p-1)/2)*a(n) (mod p) for p=prime(n), n>=2, hence a(n)*(-1)^((p-1)/2)*a(n) == (p-1)! (mod p), then apply Wilson's theorem. That is, a(n)^2 == -1 (mod prime(n)) for primes of the form 4*k+1 (see A002144) and +1 for primes of the form 4*k+3 (see A002145). See the link with a blog by W. Holsztyński.

%C See A004055 for a(n) (mod prime(n)), n>=2.

%C See A212159 for a(n)^2 (mod prime(n)), n>=2.

%H Holsztyński Włodzimierz, <a href="http://wlod.wordpress.com/article/congruence-x-2-1-mod-p-euler-and-a-1jxfhq4x4sw0j-65/">Congruence x^2==-1 (mod p) (Euler), and a super-Wilson Theorem</a>

%F a(n) = ((prime(n) - 1)/2)!, n>=2, with prime(n) = A000040(n).

%F a(n) = A005097(n-1)!, n>=2.

%e a(4) = ((7-1)/2)! = 3! = 6.

%e a(4)^2 = 36 == +1 (mod 7), because (7 + 1)/2 = 4, and 4 is even.

%e a(6) = ((13-1)/2)! = 6! = 720.

%e a(6)^2 = 518400 == -1 (mod 13) = 12 (mod 13) because (13+1)/2 = 7, and 7 is odd.

%t ((Prime[Range[2,20]]-1)/2))! (* _Harvey P. Dale_, Jan 24 2021 *)

%K nonn,easy

%O 2,2

%A _Wolfdieter Lang_, May 08 2012