

A212154


(A212153(n)^3 + 1)/7^n, n >= 0.


3



1, 18, 140, 20, 479393, 219600095, 4804461081, 686351583, 6679631931865, 82080661415031, 8898622841908566, 174149720118385232, 7290250572352382182, 65315972853762054047, 98713213404986046050649
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(n) is integer because A212153(n) is one of the three solutions of X(n)^3+1 == 0 (mod 7^n), namely the one satisfying also X(n) == 5 (mod 7).
See the comments on A210853, and the Nagell reference given in A210848.


LINKS

Table of n, a(n) for n=0..14.


FORMULA

a(n) = (b(n)^3+1)/7^n, n>=0, with b(n):=A212153(n) given by a recurrence. See also a Maple program for b(n) there.


EXAMPLE

a(0) = 1/1 = 1.
a(3) = (19^3 + 1)/7^3 = 6860/343 = 20, (b(3) = 19^7 (mod 7^3) = 19).


CROSSREFS

Cf. A210848, A210849 (the p=5 case). A210853, A212156.
Sequence in context: A114239 A087115 A163707 * A108680 A204273 A081074
Adjacent sequences: A212151 A212152 A212153 * A212155 A212156 A212157


KEYWORD

nonn,easy


AUTHOR

Wolfdieter Lang, May 02 2012


STATUS

approved



