login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (w,x,y,z) with all terms in {1,...,n} and w^2>=x^2+y^2+z^2.
3

%I #11 Jun 26 2022 17:43:15

%S 0,0,1,8,25,63,141,268,464,760,1170,1734,2472,3430,4650,6164,8012,

%T 10247,12933,16108,19827,24192,29199,34957,41525,48967,57382,66859,

%U 77456,89235,102335,116794,132748,150314,169545,190574,213490,238420

%N Number of (w,x,y,z) with all terms in {1,...,n} and w^2>=x^2+y^2+z^2.

%C a(n)+A212092(n)=n^4. For a guide to related sequences, see A211795.

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[w^2 >= x^2 + y^2 + z^2, s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

%t Map[t[#] &, Range[0, 50]] (* A212095 *)

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%Y Cf. A211795.

%Y Partial sums of A253663.

%K nonn

%O 0,4

%A _Clark Kimberling_, May 02 2012