login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = (1+x*A(x))*(1+x*A(x)^2)*(1+x*A(x)^3).
1

%I #7 Aug 24 2017 04:43:24

%S 1,3,21,199,2166,25551,317736,4101292,54429850,738053745,10180705447,

%T 142408547576,2015296793331,28800644332829,415060115307920,

%U 6025247760182629,88023011490624217,1293147320502884759,19092299095314415811,283137984006724444796

%N G.f. satisfies: A(x) = (1+x*A(x))*(1+x*A(x)^2)*(1+x*A(x)^3).

%H Vaclav Kotesovec, <a href="/A212070/b212070.txt">Table of n, a(n) for n = 0..300</a>

%F G.f.: A(x) = 1 + x*A(x)*(1+A(x)+A(x)^2) + x^2*A(x)^3*(1+A(x)+A(x)^2) + x^3*A(x)^6.

%F a(n) ~ sqrt((s*(1 + s + (1 + 2*r)*s^2 + 2*r*s^3 + 2*r*s^4 + 3*r^2*s^5)) / (1 + 3*(1 + r)*s + 6*r*s^2 + 10*r*s^3 + 15*r^2*s^4)) / (2*sqrt(Pi) * n^(3/2) * r^n), where r = 0.06228198686712455165459532624572875420874352588006064829276... and s = 1.61944833450852965640457413211207525783408084239130679443147... are roots of the system of equations (1 + r*s) * (1 + r*s^2) * (1 + r*s^3) = s, r*(1 + 2*s + 3*(1+r)*s^2 + 4*r*s^3 + 5*r*s^4 + 6*r^2*s^5) = 1. - _Vaclav Kotesovec_, Aug 24 2017

%e G.f.: A(x) = 1 + 3*x + 21*x^2 + 199*x^3 + 2166*x^4 + 25551*x^5 +..

%e Related expansions:

%e A(x)^2 = 1 + 6*x + 51*x^2 + 524*x^3 + 5967*x^4 + 72456*x^5 +...

%e A(x)^3 = 1 + 9*x + 90*x^2 + 1002*x^3 + 11970*x^4 + 150057*x^5 +...

%e A(x)^4 = 1 + 12*x + 138*x^2 + 1660*x^3 + 20823*x^4 + 269964*x^5 +...

%e A(x)^5 = 1 + 15*x + 195*x^2 + 2525*x^3 + 33255*x^4 + 446298*x^5 +...

%e A(x)^6 = 1 + 18*x + 261*x^2 + 3624*x^3 + 50076*x^4 + 695934*x^5 +...

%e where A(x) = 1 + x*A(x) + x*A(x)^2 + x*(1+x)*A(x)^3 + x^2*A(x)^4 + x^2*A(x)^5 + x^3*A(x)^6.

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x*A^2)*(1+x*A^3)+x*O(x^n)); polcoeff(A, n)}

%o for(n=0, 40, print1(a(n), ", "))

%Y Cf. A182053, A211854.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 29 2012