login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z.
5

%I #17 May 24 2017 04:23:49

%S 0,1,2,9,22,41,72,115,170,243,334,443,576,733,914,1125,1366,1637,1944,

%T 2287,2666,3087,3550,4055,4608,5209,5858,6561,7318,8129,9000,9931,

%U 10922,11979,13102,14291,15552,16885,18290,19773,21334,22973

%N Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z.

%C w is the average of {x,y,z}, as well as {w,x,y,z}.

%C For a guide to related sequences, see A211795.

%C a(n) is also the number of (w,x,y,z) with all terms in {0,1,...,n-1} and 3*w = x+y+z. - _Clark Kimberling_, May 16 2012

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2,-3,3,-1).

%F a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).

%F From _R. J. Mathar_, Jun 25 2012: (Start)

%F G.f. x*(1 - x + 6*x^2 - x^3 + x^4)/((1 + x + x^2)*(1 - x)^4).

%F 3*a(n) = n^3 + 2*A049347(n-1). (End)

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[3 w == x + y + z, s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

%t Map[t[#] &, Range[0, 50]] (* A212087 *)

%t FindLinearRecurrence[%]

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%t LinearRecurrence[{3, -3, 2, -3, 3, -1},{0, 1, 2, 9, 22, 41},42] (* _Ray Chandler_, Aug 02 2015 *)

%Y Cf. A211795.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, May 01 2012