login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (w,x,y,z) with all terms in {1,...,n} and w=x*y*z-2.
2

%I #10 Oct 23 2019 16:44:10

%S 0,0,3,6,15,18,28,34,43,46,64,67,76,85,100,103,121,124,142,151,160,

%T 163,193,199,208,218,236,239,266,269,290,299,308,317,353,356,365,374,

%U 404,407,434,437,455,473,482,485,530,536,554,563,581,584,614,623

%N Number of (w,x,y,z) with all terms in {1,...,n} and w=x*y*z-2.

%C For a guide to related sequences, see A211795.

%H Robert Israel, <a href="/A212060/b212060.txt">Table of n, a(n) for n = 0..10000</a>

%p N:= 100:

%p A:= Vector(N):

%p for x from 1 to N do

%p for y from 1 to min(N,floor((N+2)/x)) do

%p for z from max(1,ceil(3/(x*y))) to min(N,floor((N+2)/(x*y))) do

%p w:=max(x,y,z,x*y*z-2);

%p A[w]:= A[w]+1;

%p od od od:

%p B:= ListTools:-PartialSums(convert(A,list)):

%p 0,op(B); # _Robert Israel_, Oct 23 2019

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[w == x*y*z - 2, s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

%t Map[t[#] &, Range[0, 60]] (* A212060 *)

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%Y Cf. A211795.

%K nonn

%O 0,3

%A _Clark Kimberling_, Apr 30 2012