Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 28 2014 09:56:12
%S 1,3,1,7,3,5,15,7,61,2,31,15,241,25,8,21,31,131,101,137,13,127,21,12,
%T 7,2381,343,151,255,127,2105,167,10781,2033,32663,32,511,255,16531,
%U 929,42061,9383,84677,2357,83,1023,511,5231,7387,74189,1771,12419
%N Numerators in the resistance triangle: T(k,n)=b, where b/c is the resistance distance R(k,n) for k resistors in an n-dimensional cube.
%C The term "resistance distance" for electric circuits was in use years before it was proved to be a metric (on edges of graphs). The historical meaning has been described thus: "one imagines unit resistors on each edge of a graph G and takes the resistance distance between vertices i and j of G to be the effective resistance between vertices i and j..." (from Klein, 2002; see the References). Let R(k,n) denote the resistance distance for k resistors in an n-dimensional cube (for details, see Example and References). Then
%C R(k,n)=A212045(k,n)/A212046(k,n). Moreover,
%C A212045(1,n)=A090633(n), A212045(n,n)=A046878(n),
%C A212046(1,n)=A090634(n), A212046(n,n)=A046879(n).
%D F. Nedemeyer and Y. Smorodinsky, Resistances in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.
%H D. J. Klein, <a href="http://dx.doi.org/10.1007/BF01164627">Resistance Distance</a>, Journal of Mathematical Chemistry 12 (1993) 81-95.
%H D. J. Klein, <a href="http://public.carnet.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_633_649_KLEIN.pdf">Resistance-Distance Sum Rules</a>, Croatia Chemica Acta, 75 (2002), 633-649.
%H Nicholas Pippenger, <a href="http://arxiv.org/abs/0904.1757v1"> The Hypercube of Resistors, Asymptotic Expansions, and Preferential Arrangements</a>, arXiv:0904.1757v1 [math.CO], 2009.
%H N. Pippenger, <a href="http://www.jstor.org/stable/10.4169/002557010X529752">The Hypercube of Resistors, Asymptotic Expansions, and Preferential Arrangements</a>, Mathematics Magazine, 83:5 (2010) 331-346.
%H David Randall, <a href="http://www.radioelectronicschool.net/files/downloads/resistor_cube_problem.pdf">The Resistor Cube Problem</a>.
%H D. Singmaster, <a href="http://dx.doi.org/10.1137/1022099">Problem 79-16, Resistances in an n-Dimensional Cube</a>, SIAM Review, 22 (1980) 504.
%F A212045(n)/A212046(n) is the rational number R(k, n) =
%F [(k-1)*R(k-2,n)-n*R(k-1,n)+2^(1-n)]/(k-n-1), for n>=1, k>=1.
%e First six rows of A212045/A212046:
%e 1
%e 3/4 .... 1
%e 7/12 ... 3/4 .... 5/6
%e 15/32 .. 7/12 ... 61/96 ... 2/3
%e 31/80 .. 15/32 .. 241/480 . 25/48 ... 8/15
%e 21/64 .. 31/80 .. 131/320 . 101/240 . 137/320 . 13/30
%e The resistance distances for n=3 (the ordinary cube) are 7/12, 3/4, and 5/6, so that row 3 of the triangle of numerators is (7, 3, 5). For the corresponding electric circuit, suppose X is a vertex of the cube. The resistance across any one of the 3 edges from X is 7/12 ohm; the resistance across any two adjoined edges (i.e., a diagonal of a face of the cubes) is 3/4 ohm; the resistance across and three adjoined edges (a diagonal of the cube) is 5/6 ohm.
%t R[0, n_] := 0; R[1, n_] := (2 - 2^(1 - n))/n;
%t R[k_, n_] := R[k, n] = ((k - 1) R[k - 2, n] - n R[k - 1, n] + 2^(1 - n))/(k - n - 1)
%t t = Table[R[k, n], {n, 1, 11}, {k, 1, n}]
%t Flatten[Numerator[t]] (* A212045 *)
%t Flatten[Denominator[t]] (* A212046 *)
%t TableForm[Numerator[t]]
%t TableForm[Denominator[t]]
%Y Cf. A212046, A046878, A046879, A046825, A090634, A090633.
%K nonn,frac,tabl
%O 1,2
%A _Peter J. C. Moses_, Apr 28 2012