|
|
A211969
|
|
Triangle of decimal equivalents of binary numbers with some initial repeats, A211968.
|
|
4
|
|
|
3, 6, 7, 10, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Alois P. Heinz, Rows n = 2..14, flattened
Index entries for sequences related to curling numbers
|
|
EXAMPLE
|
Irregular triangle begins, starting at row 2:
3;
6, 7;
10, 12, 13, 14, 15;
20, 21, 24, 25, 26, 27, 28, 29, 30, 31;
36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63;
|
|
MAPLE
|
s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
[[x[], 0], [x[], 1]][], s(n-1))) end:
T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select
(proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=
l[i+1..2*i] then return true fi od; false end, s(n)))[] end:
seq (T(n), n=2..7); # Alois P. Heinz, Dec 04 2012
|
|
CROSSREFS
|
Complement of A211967.
Row lengths give: A093370.
Column 1 gives: A005418(n+1).
Right border gives: A000225(n).
Cf. A093370, A093371, A121880, A122536, A211027, A211029, A211973, A216955.
Sequence in context: A188073 A286806 A297125 * A173059 A189387 A091087
Adjacent sequences: A211966 A211967 A211968 * A211970 A211971 A211972
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Omar E. Pol, Dec 03 2012
|
|
STATUS
|
approved
|
|
|
|