%I #26 Mar 28 2014 23:42:28
%S 1,2,4,5,8,9,11,16,17,18,19,22,23,32,33,34,35,37,38,39,44,46,47,64,65,
%T 66,67,68,69,70,71,74,75,76,77,78,79,88,89,92,93,94,95,128,129,130,
%U 131,132,133,134,135,137,138,139,140,141,142,143,148,149,150
%N Triangle of decimal equivalents of binary numbers with no initial repeats, A211027.
%H Alois P. Heinz, <a href="/A211967/b211967.txt">Rows n = 1..15, flattened</a>
%H <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>
%e Irregular triangle begins:
%e 1;
%e 2;
%e 4, 5;
%e 8, 9, 11;
%e 16, 17, 18, 19, 22, 23;
%e 32, 33, 34, 35, 37, 38, 39, 44, 46, 47;
%p s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
%p [[x[], 0], [x[], 1]][], s(n-1))) end:
%p T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select
%p (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=
%p l[i+1..2*i] then return false fi od; true end, s(n)))[] end:
%p seq (T(n), n=1..8); # _Alois P. Heinz_, Dec 03 2012
%Y Columns 1-2 give: A000079(n-1), A000051(n-1) for n>2. Row n has length A093371(n). Right border gives A083329(n-1).
%Y Cf. A122536, A211029, A211968, A211969, A216955.
%K nonn,tabf,base
%O 1,2
%A _Omar E. Pol_, Nov 30 2012