%I #23 Aug 02 2014 06:14:08
%S 2,6,20,74,286,1124,4460,17768,70930,283440,1133200,4531686,18124522,
%T 72493652,289965744,1159845258,4639345612,18557311624,74229104872,
%U 296916136278,1187663978718,4750654782144,19002616863186,76010462922018
%N Number of binary sequences of length 2n and curling number 1.
%C Equivalently, number of binary sequences of length 2n with no initial repeats (see A122536).
%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102
%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
%H <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>
%F a(n) = 2*A093371(2n) = A093371(2n+1) = A211965(n+1)/2.
%Y Bisection of A122536.
%Y Cf. A093371, A211965, A216955, A216958.
%K nonn
%O 1,1
%A _Omar E. Pol_, Nov 28 2012