login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lower triangular n X n arrays colored with integers 0 upwards introduced in row major order, with no element equal to any diagonal or antidiagonal neighbor, and containing the value n(n+1)/2-2.
1

%I #10 Jul 20 2018 10:02:17

%S 0,3,12,37,90,186,343,582,927,1405,2046,2883,3952,5292,6945,8956,

%T 11373,14247,17632,21585,26166,31438,37467,44322,52075,60801,70578,

%U 81487,93612,107040,121861,138168,156057,175627,196980,220221,245458,272802,302367

%N Number of lower triangular n X n arrays colored with integers 0 upwards introduced in row major order, with no element equal to any diagonal or antidiagonal neighbor, and containing the value n(n+1)/2-2.

%C Column 1 of A211963.

%H R. H. Hardin, <a href="/A211958/b211958.txt">Table of n, a(n) for n = 1..74</a>

%F Empirical: a(n) = (1/8)*n^4 + (1/4)*n^3 - (9/8)*n^2 + (7/4)*n for n>1.

%F Conjectures from _Colin Barker_, Jul 20 2018: (Start)

%F G.f.: x^2*(3 - 3*x + 7*x^2 - 5*x^3 + x^4) / (1 - x)^5.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.

%F (End)

%e Some solutions for n=4:

%e ..0........0........0........0........0........0........0........0

%e ..1.2......1.2......1.2......1.2......1.1......1.2......1.2......1.2

%e ..3.4.5....3.0.4....3.4.5....3.4.5....2.3.4....1.3.4....3.4.0....3.4.5

%e ..3.6.7.8..5.6.7.8..6.7.8.0..6.0.7.8..5.6.7.8..5.6.7.8..5.6.7.8..6.7.8.1

%Y Cf. A211963.

%K nonn

%O 1,2

%A _R. H. Hardin_, Apr 26 2012