login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference between sum of largest parts and sum of smallest parts of all partitions of n into an odd number of parts.
3

%I #16 Feb 16 2017 02:44:09

%S 0,0,0,0,1,3,6,13,22,38,58,93,134,202,282,405,554,774,1035,1412,1862,

%T 2489,3243,4267,5496,7137,9106,11684,14782,18782,23575,29689,37010,

%U 46238,57275,71048,87489,107844,132083,161853,197243,240418,291619,353702,427167

%N Difference between sum of largest parts and sum of smallest parts of all partitions of n into an odd number of parts.

%H Alois P. Heinz, <a href="/A211870/b211870.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A222047(n) - A222044(n).

%F a(n) = A116686(n) - A211881(n).

%e a(6) = 6: partitions of 6 into an odd number of parts are [2,1,1,1,1], [2,2,2], [3,2,1], [4,1,1], [6], difference between sum of largest parts and sum of smallest parts is (2+2+3+4+6) - (1+2+1+1+6) = 17 - 11 = 6.

%p g:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+

%p `if`(i>n, [0, 0], g(n, i+1)+(l-> [l[2], l[1]])(g(n-i, i)))

%p end:

%p b:= proc(n, i) option remember;

%p [`if`(n=i, n, 0), 0]+`if`(i<1, [0, 0], b(n, i-1)+

%p `if`(n<i, [0, 0], (l-> [l[2], l[1]])(b(n-i, i))))

%p end:

%p a:= n-> g(n, 1)[1] -b(n, n)[1]:

%p seq(a(n), n=0..50);

%t g[n_, i_] := g[n, i] = {If[n==i, n, 0], 0} + If[i>n, {0, 0}, g[n, i+1] + Reverse[g[n-i, i]]]; b[n_, i_] := b[n, i] = {If[n==i, n, 0], 0} + If[i<1, {0, 0}, b[n, i-1] + If[n<i, {0, 0}, Reverse[b[n-i, i]]]]; a[n_] := g[n, 1][[1]] - b[n, n][[1]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Feb 16 2017, translated from Maple *)

%Y Cf. A116686, A211881, A222044, A222047.

%K nonn

%O 0,6

%A _Alois P. Heinz_, Feb 12 2013