%I #7 Dec 27 2012 23:47:37
%S 1,1,2,2,4,5,7,9,12,13,18,23,25,36,43,45,60,75,78,102,108,126,151,184,
%T 188,237,260,305,339,408,415,521,548,627,689,815,824,997,1050,1202,
%U 1287,1497,1537,1831,1903,2166,2288,2658,2721,3156,3274
%N Number of partitions of n into parts <= 6 with the property that all parts have distinct multiplicities.
%H Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dmp.html">Using generatingfunctionology to enumerate distinct-multiplicity partitions</a>.
%e For n=3 the a(3)=2 partitions are {3} and {1,1,1}. Note that {2,1} does not count, as 1 and 2 appear with the same nonzero multiplicity.
%o (Haskell)
%o a211861 n = p 0 [] [1..6] n where
%o p m ms _ 0 = if m `elem` ms then 0 else 1
%o p _ _ [] _ = 0
%o p m ms ks'@(k:ks) x
%o | x < k = 0
%o | m == 0 = p 1 ms ks' (x - k) + p 0 ms ks x
%o | m `elem` ms = p (m + 1) ms ks' (x - k)
%o | otherwise = p (m + 1) ms ks' (x - k) + p 0 (m : ms) ks x
%o -- _Reinhard Zumkeller_, Dec 27 2012
%Y Cf. A026812, A098859.
%Y Cf. A105637, A211858, A211859, A211860, A211862, A211863.
%K nonn
%O 0,3
%A _Matthew C. Russell_, Apr 25 2012