login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211853
Number of nonnegative integer arrays of length 2n+8 with new values 0 upwards introduced in order, no three adjacent elements all unequal, and containing the value n+1.
1
1731, 6936, 21897, 57913, 134164, 280751, 542235, 981675, 1685165, 2766870, 4374561, 6695649, 9963718, 14465557, 20548691, 28629411, 39201303, 52844276, 70234089, 92152377, 119497176, 153293947, 194707099, 245052011, 305807553
OFFSET
1,1
COMMENTS
Row 7 of A211849.
LINKS
FORMULA
Empirical: a(n) = (499/720)*n^6 + (2587/240)*n^5 + (10031/144)*n^4 + (11681/48)*n^3 + (179153/360)*n^2 + (8788/15)*n + 323.
Conjectures from Colin Barker, Jul 20 2018: (Start)
G.f.: x*(1731 - 5181*x + 9696*x^2 - 10295*x^3 + 6435*x^4 - 2210*x^5 + 323*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....0....1....1....1....0....1....1....0....1....1....1
..1....1....1....1....0....1....1....1....1....1....1....1....1....0....1....1
..2....2....1....2....1....0....1....2....2....1....2....2....1....0....2....1
..2....2....2....2....1....0....2....2....2....2....2....2....2....2....2....2
..3....2....2....2....2....2....2....3....3....1....0....3....2....0....3....2
..3....3....2....3....1....2....2....3....2....1....0....3....3....2....2....2
..2....3....3....3....2....3....2....4....2....3....0....1....3....2....3....3
..3....4....3....4....2....3....3....4....2....3....3....1....4....3....3....2
..3....3....3....4....2....4....2....5....4....3....3....4....3....3....4....2
..4....4....4....2....2....4....2....5....4....3....3....4....4....4....4....4
..3....3....4....2....3....2....4....6....0....4....4....1....4....3....0....4
..3....3....4....2....3....2....4....6....0....3....4....1....5....3....0....0
..4....4....0....3....4....3....5....2....5....4....0....0....4....0....0....4
CROSSREFS
Cf. A211849.
Sequence in context: A258166 A130876 A234706 * A252454 A256807 A008745
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 22 2012
STATUS
approved