Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 10 2022 01:52:38
%S 1,1,2,1,2,5,1,2,3,15,1,2,3,6,52,1,2,3,4,11,203,1,2,3,4,7,23,877,1,2,
%T 3,4,5,12,47,4140,1,2,3,4,5,8,19,103,21147,1,2,3,4,5,6,13,33,226,
%U 115975,1,2,3,4,5,6,9,20,59,518,678570,1,2,3,4,5,6,7,14,29,102,1200,4213597,1,2,3,4
%N T(n,k)=Number of nonnegative integer arrays of length n+2k-2 with new values introduced in order 0 upwards and every value appearing only in runs of at least k
%H R. H. Hardin, <a href="/A211700/b211700.txt">Table of n, a(n) for n = 1..9999</a>
%H Beáta Bényi, Toufik Mansour, and José L. Ramírez, <a href="https://ajc.maths.uq.edu.au/pdf/84/ajc_v84_p325.pdf">Set partitions and non-crossing partitions with l-neighbors and l-isolated elements</a>, Australasian J. Comb. (2022) Vol. 84, No. 2, 325-340.
%e Table starts
%e ..........1.....1....1...1...1...1..1..1..1..1..1..1..1..1
%e ..........2.....2....2...2...2...2..2..2..2..2..2..2..2..2
%e ..........5.....3....3...3...3...3..3..3..3..3..3..3..3..3
%e .........15.....6....4...4...4...4..4..4..4..4..4..4..4..4
%e .........52....11....7...5...5...5..5..5..5..5..5..5..5..5
%e ........203....23...12...8...6...6..6..6..6..6..6..6..6..6
%e ........877....47...19..13...9...7..7..7..7..7..7..7..7..7
%e .......4140...103...33..20..14..10..8..8..8..8..8..8..8..8
%e ......21147...226...59..29..21..15.11..9..9..9..9..9..9..9
%e .....115975...518..102..45..30..22.16.12.10.10.10.10.10.10
%e .....678570..1200..182..73..41..31.23.17.13.11.11.11.11.11
%e ....4213597..2867..334.118..59..42.32.24.18.14.12.12.12.12
%e ...27644437..6946..608.185..89..55.43.33.25.19.15.13.13.13
%e ..190899322.17234.1121.294.136..75.56.44.34.26.20.16.14.14
%e .1382958545.43393.2109.480.205.107.71.57.45.35.27.21.17.15
%e All solutions for n=5 k=4
%e ..0....0....0....0....0
%e ..0....0....0....0....0
%e ..0....0....0....0....0
%e ..0....0....0....0....0
%e ..1....0....0....0....0
%e ..1....0....0....0....1
%e ..1....0....1....0....1
%e ..1....0....1....1....1
%e ..1....0....1....1....1
%e ..1....0....1....1....1
%e ..1....0....1....1....1
%Y Cf. A000110 (column 1), A211694 (column 2), A211695 (column 3).
%K nonn,tabl
%O 1,3
%A _R. H. Hardin_, Apr 19 2012