login
Number of -4..4 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having three or four distinct values for every i<=n and j<=n
1

%I #4 Apr 18 2012 05:40:44

%S 68,516,3848,28464,208560,1516160,10941536,78444752,559061552,

%T 3962850688,27952463280,196285510848,1372724453104,9564449019232,

%U 66413636701040,459728500804384,3173268698181920,21846285064971776,150040513219495120

%N Number of -4..4 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having three or four distinct values for every i<=n and j<=n

%H R. H. Hardin, <a href="/A211691/b211691.txt">Table of n, a(n) for n = 1..210</a>

%e Some solutions for n=5

%e .-4...-1...-3...-1...-3...-2...-4...-4...-4...-2...-1...-3...-4....0....0...-4

%e .-2....2...-4....4....3...-1....1....2....1...-4...-2...-1....0...-3...-4....2

%e ..0....3....1...-2....1...-3....0...-3...-2....1...-1....0....2....3...-1....4

%e ..4....4....3....0...-4....0...-4....4....0....0...-4....4...-3...-3....4...-4

%e ..3....1....0...-1....3...-1....0...-2...-3...-4....4...-3...-2....3....1....2

%e .-4....2....3....4....1....1....2....0....0....1....2....3...-3...-2....0....0

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 18 2012