Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 18 2024 08:56:29
%S 0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
%N Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.
%C Different from A001069, but equal for n < 256.
%H Amiram Eldar, <a href="/A211667/b211667.txt">Table of n, a(n) for n = 1..10000</a>
%F a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
%F G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
%F = (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
%F a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - _Kevin Ryde_, Jan 18 2024
%e a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
%t a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* _Amiram Eldar_, Dec 08 2018 *)
%o (PARI) apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - _M. F. Hasler_, Dec 07 2018
%o (PARI) a(n) = if(n<=1,0, logint(logint(n,2),2) + 1); \\ _Kevin Ryde_, Jan 18 2024
%o (Python) A211667=lambda n: n and (n.bit_length()-1).bit_length() # _Nathan L. Skirrow_, May 16 2023
%Y Cf. A001069, A001146, A010096, A211662, A211668, A211670.
%Y Cf. A087046 (run lengths).
%K nonn,easy
%O 1,4
%A _Hieronymus Fischer_, Apr 30 2012