login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+2x+2y>0.
2

%I #13 Aug 23 2017 06:22:43

%S 0,4,30,104,245,485,837,1339,1998,2858,3920,5234,6795,8659,10815,

%T 13325,16172,19424,23058,27148,31665,36689,42185,48239,54810,61990,

%U 69732,78134,87143,96863,107235,118369,130200,142844,156230,170480,185517,201469,218253

%N Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+2x+2y>0.

%C For a guide to related sequences, see A211422.

%H Colin Barker, <a href="/A211624/b211624.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).

%F a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).

%F From _Colin Barker_, Aug 23 2017: (Start)

%F G.f.: x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2).

%F a(n) = (64*n^3 - 14*n^2 + 12*n) / 16 for n even.

%F a(n) = (64*n^3 - 14*n^2 + 24*n - 10) / 16 for n odd. (End)

%t t = Compile[{{u, _Integer}},

%t Module[{s = 0}, (Do[If[w + 2 x + 2 y > 0,

%t s = s + 1], {w, #}, {x, #}, {y, #}] &[

%t Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

%t Map[t[#] &, Range[0, 60]] (* A211624 *)

%t FindLinearRecurrence[%]

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%t LinearRecurrence[{2, 1, -4, 1, 2, -1},{0, 4, 30, 104, 245, 485},36] (* _Ray Chandler_, Aug 02 2015 *)

%o (PARI) concat(0, Vec(x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2) + O(x^50))) \\ _Colin Barker_, Aug 23 2017

%Y Cf. A211422.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Apr 17 2012