login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211582
Number of -2..2 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having three, four, six or seven distinct values for every i,j,k<=n.
1
16, 44, 116, 284, 696, 1672, 3996, 9580, 22656, 54456, 128292, 309676, 729304, 1768840, 4171516, 10165276, 24024384, 58797992, 139284836, 342197820, 812420344, 2002527128, 4763655900, 11774209164, 28056237376, 69503351704
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 13*a(n-2) - 26*a(n-3) - 57*a(n-4) + 116*a(n-5) + 97*a(n-6) - 216*a(n-7) - 36*a(n-8) + 144*a(n-9) - 36*a(n-10).
Empirical g.f.: 4*x*(4 + 3*x - 45*x^2 - 26*x^3 + 169*x^4 + 64*x^5 - 264*x^6 - 33*x^7 + 144*x^8 - 36*x^9) / ((1 - x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)*(1 - x - 3*x^2 + x^3)). - Colin Barker, Jul 19 2018
EXAMPLE
Some solutions for n=5:
.-2....1....0...-2...-1...-2....0...-2....0....1...-1....2...-2....0....1....1
..1....0....2...-1...-2...-1...-1....0....1...-2....2....1...-1...-1....2....0
.-2...-1....1....2....1...-2....0...-2....0...-1...-1...-2....0....0....0...-1
.-1....0...-2...-1...-2...-1...-1...-1....1...-2...-2....1...-2...-2....2....2
..0....1....1....0....1....2....0....0....0...-1....1....2...-1...-1....1...-1
.-1....2....0....1...-2....1...-2...-2...-1...-2....2....1....2....2...-2...-2
CROSSREFS
Sequence in context: A293858 A258547 A211573 * A204032 A192143 A221593
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 16 2012
STATUS
approved