login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211466
Number of (n+1) X (n+1) -8..8 symmetric matrices with every 2 X 2 subblock having sum zero and one or two distinct values.
1
25, 33, 45, 65, 97, 149, 233, 369, 589, 945, 1521, 2453, 3961, 6401, 10349, 16737, 27073, 43797, 70857, 114641, 185485, 300113, 485585, 785685, 1271257, 2056929, 3328173, 5385089, 8713249, 14098325, 22811561, 36909873, 59721421, 96631281
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-3).
Empirical g.f.: x*(25 - 17*x - 21*x^2) / ((1 - x)*(1 - x - x^2)). - Colin Barker, Jul 18 2018
EXAMPLE
Some solutions for n=3:
.-3..1.-1..3...-5..5.-5..5...-3..3.-3..3....2..2..2..2...-2.-2.-2.-2
..1..1.-1.-1....5.-5..5.-5....3.-3..3.-3....2.-6..2.-6...-2..6.-2..6
.-1.-1..1..1...-5..5.-5..5...-3..3.-3..3....2..2..2..2...-2.-2.-2.-2
..3.-1..1.-3....5.-5..5.-5....3.-3..3.-3....2.-6..2.-6...-2..6.-2..6
CROSSREFS
Sequence in context: A219951 A209333 A131610 * A269345 A134099 A129074
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 12 2012
STATUS
approved