OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..136
FORMULA
Empirical: a(n) = 59*a(n-1) -1530*a(n-2) +22776*a(n-3) -212619*a(n-4) +1268503*a(n-5) -4641183*a(n-6) +8770309*a(n-7) -1702416*a(n-8) -18846228*a(n-9) +5437041*a(n-10) +28831259*a(n-11) +22145188*a(n-12) +8024466*a(n-13) +1548672*a(n-14) +152856*a(n-15) +6048*a(n-16)
EXAMPLE
Some solutions for n=3
..1.-4.-1..0....1..0.-1.-2....3..0..5..1...-3.-1..2..2....7..0..6.-1
.-4..7.-2..3....0.-1..2..1....0.-3.-2.-4...-1..5.-6..2....0.-7..1.-6
.-1.-2.-3..2...-1..2.-3..0....5.-2..7.-1....2.-6..7.-3....6..1..5..0
..0..3..2.-1...-2..1..0..3....1.-4.-1.-5....2..2.-3.-1...-1.-6..0.-5
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 11 2012
STATUS
approved