The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211402 Triangle T(n,k), 0<=k<=n, given by (0,2,0,4,0,6,0,8,0,10,0,...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9,...) where DELTA is the operator defined in A084938. 2
 1, 0, 1, 0, 2, 3, 0, 4, 18, 15, 0, 8, 84, 180, 105, 0, 16, 360, 1500, 2100, 945, 0, 32, 1488, 10800, 27300, 28350, 10395, 0, 64, 6048, 72240, 294000, 529200, 436590, 135135, 0, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A Galton triangle. Essentially the same as A187075. LINKS FORMULA T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1), T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n. T(n,k) = 2^(n-k)*A001147(k)*A048993(n,k). G.f.: F(x,t) = 1 + x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3!+ ... = Sum_{n = 0..inf}R(n,x)*t^n/n!. The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x. EXAMPLE Triangle begins : 1 0, 1 0, 2, 3 0, 4, 18, 15 0, 8, 84, 180, 105 0, 16, 360, 1500, 2100, 945 0, 32, 1488, 10800, 27300, 28350, 10395 CROSSREFS Cf. A000079, A001147, A048993. Sequence in context: A261275 A140326 A261781 * A256064 A126436 A102394 Adjacent sequences:  A211399 A211400 A211401 * A211403 A211404 A211405 KEYWORD easy,nonn,tabl AUTHOR Philippe Deléham, Feb 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 22:57 EST 2020. Contains 331104 sequences. (Running on oeis4.)