login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer pairs (x,y) such that 1<x<=y<=n and x^2+y^2<=n^2.
3

%I #11 Jun 04 2019 13:05:28

%S 0,1,3,5,9,13,17,23,30,38,45,53,64,74,86,97,110,123,138,154,168,186,

%T 203,220,241,261,282,302,324,348,370,396,421,448,476,501,531,558,591,

%U 622,651,684,717,753,788,821,858,894,933,973,1014,1054,1093,1135

%N Number of integer pairs (x,y) such that 1<x<=y<=n and x^2+y^2<=n^2.

%C For a guide to related sequences, see A211266.

%H Robert Israel, <a href="/A211340/b211340.txt">Table of n, a(n) for n = 1..2000</a>

%p N:= 100: # for a(1)..a(N)

%p V:= Vector(N):

%p for y from 1 to N-1 do

%p for x from 1 to y do

%p r:= x^2 + y^2;

%p if r > N^2 then break fi;

%p t:= ceil(sqrt(r));

%p V[t]:= V[t]+1

%p od od:

%p ListTools:-PartialSums(convert(V,list)); # _Robert Israel_, Jun 04 2019

%t a = 1; b = n; z1 = 120;

%t t[n_] := t[n] = Flatten[Table[x^2 + y^2, {x, a, b - 1}, {y, x, b}]] (* 1<=x<=y<=n *)

%t c[n_, k_] := c[n, k] = Count[t[n], k]

%t TableForm[Table[c[n, k], {n, 1, 7}, {k, 1, n^2}]]

%t Table[c[n, n^2], {n, 1, z1}] (* A046080 *)

%t c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]

%t Table[c1[n, n^2], {n, 1, z1/2}] (* A211340 *)

%Y Cf. A046080, A211266.

%K nonn

%O 1,3

%A _Clark Kimberling_, Apr 08 2012