OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 13*a(n-1) -40*a(n-2) -130*a(n-3) +771*a(n-4) +305*a(n-5) -5330*a(n-6) +176*a(n-7) +18744*a(n-8) +2324*a(n-9) -31120*a(n-10) -14864*a(n-11) +9312*a(n-12) +3072*a(n-13) -1152*a(n-14)
EXAMPLE
Some solutions for n=3
..5.-2..0.-5....5..0..2.-5...-5..0.-3..0...-4..3.-4..1....2..1..1.-3
.-2.-1..3..2....0.-5..3..0....0..5.-2..5....3.-2..3..0....1.-4..2..0
..0..3.-5..0....2..3.-1.-2...-3.-2.-1.-2...-4..3.-4..1....1..2..0.-2
.-5..2..0..5...-5..0.-2..5....0..5.-2..5....1..0..1..2...-3..0.-2..4
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 07 2012
STATUS
approved