login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).
7

%I #6 Dec 21 2015 04:26:59

%S 0,1,1,2,2,3,3,5,5,6,6,8,8,9,9,11,11,13,13,15,15,16,16,19,19,20,20,22,

%T 22,24,24,27,27,28,28,31,31,32,32,35,35,37,37,39,39,40,40,44,44,46,46,

%U 48,48,50,50,53,53,54,54,58,58,59,59,62,62,64,64,66,66,68,68

%N Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).

%C For a guide to related sequences, see A211266.

%t a = 1; b = n; z1 = 120;

%t t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},

%t {y, x, b}]]

%t c[n_, k_] := c[n, k] = Count[t[n], k]

%t Table[c[n, n], {n, 1, z1}] (* A038548 *)

%t Table[c[n, n + 1], {n, 1, z1}] (* A072670 *)

%t Table[c[n, 2*n], {n, 1, z1}] (* A211270 *)

%t Table[c[n, 3*n], {n, 1, z1}] (* A211271 *)

%t Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *)

%t c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]

%t Print

%t Table[c1[n, n], {n, 1, z1}] (* A094820 *)

%t Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *)

%t Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *)

%t Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *)

%t Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

%Y Cf. A211266.

%K nonn

%O 1,4

%A _Clark Kimberling_, Apr 07 2012