login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Order of 5 mod n-th prime: least k such that prime(n) divides 5^k-1.
16

%I #22 May 13 2024 09:16:15

%S 1,2,0,6,5,4,16,9,22,14,3,36,20,42,46,52,29,30,22,5,72,39,82,44,96,25,

%T 102,106,27,112,42,65,136,69,37,75,156,54,166,172,89,15,19,192,196,33,

%U 35,222,226,114,232,119,40,25,256,262,67,27,276,140,282,292

%N Order of 5 mod n-th prime: least k such that prime(n) divides 5^k-1.

%H T. D. Noe, <a href="/A211241/b211241.txt">Table of n, a(n) for n = 1..1000</a>

%H Alexandre Zalesski, <a href="https://arxiv.org/abs/2401.16075">Unisingular subgroups of symplectic group Sp_2n(2) for 2n < 250</a>, arXiv:2401.16075 [math.GR], 2024. See p. 52.

%t nn = 5; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]

%o (GAP) A000040:=Filtered([1..350],IsPrime);;

%o List([1..Length(A000040)],n->OrderMod(5,A000040[n])); # _Muniru A Asiru_, Feb 06 2019

%o (PARI) a(n,{base=5}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ _Jianing Song_, May 13 2024

%Y Cf. A019335 (full reptend primes in base 5).

%Y In other bases: A014664, A062117, A082654, A211242, A211243, A211244, A211245, A002371.

%K nonn,easy

%O 1,2

%A _T. D. Noe_, Apr 11 2012